સ્ટોપ વોચની લઘુત્તમ માપ શક્તિ $\frac{1}{5}$ સેકન્ડ છે. લોલકના $20$ દોલન માટેનો સમય $25\;s $ નોંધાયો. આ માપનમાં મહત્તમ પ્રતિશત ત્રુટિ ........ $\%$ હશે .
$8$
$1$
$0.8$
$16$
ધનના બાજુના માપનમાં સાપેક્ષ ત્રૂટી $0.027$ છે. તેના કદના માપનમાં સંબંધિત ત્રુટી કેટલી થાય?
એક વિદ્યાર્થીં Searle's રીતથી $ 2m$ લંબાઈના એક તારના યંગના સ્થિતિ સ્થાપક અચળાંકની ગણતરી માટે પ્રયોગ કરે છે. ચોકસાઈપૂર્વકના અવલોકનમાં બરાબર $10 kg$ ના લોડ આગળ વિદ્યાર્થીંએ આપ્યું કે તારની લંબાઈ વિસ્તરણ $ \pm 0.05 mm $ અચોકકસતા સાથે $ 0.88\,mm $ જેટલું થાય છે. તે વિદ્યાર્થીં તારનો વ્યાસનું મૂલ્ય પણ $\pm 0.01 mm $અચોકકસતા સાથે $0.4 mm $ માપે છે. $g = 9.8 m/s^2$ (ચોકકસ) લો. અવલોકનમાં યંગનો સ્થિતિ સ્થાપકતા અચળાંક શોધો.
એક ઘનની ઘનતાના માપનમાં દળ અને લંબાઈ અનુક્રમે $(10.00 \pm 0.10)\,\,kg\,$ અને $(0.10 \pm 0.01)\,\,m\,$ છે. તો તેની ઘનતાના માપનમાં કેટલી ત્રુટિ હશે?
લાકડાના ટુકડાની લંબાઈ $l $ પહોળાઈ $b$ અને જાડાઈ $ t $ છે જે માપ પટ્ટીની મદદથી આપેલ છે. શક્ય ત્રુટિઓ સાથેનું પરિણામ $l= 15.12 \pm 0.01 \,cm$ , $b = 10.15 \pm 0.01 \,cm, t = 5.28 \pm 0.01 \,cm $ છે. કદમાં યોગ્ય સાર્થક આંકના સંદર્ભમાં પ્રતિશત ત્રુટિ........ $\%$ હશે .
$R _1=(10 \pm 0.5) \Omega$ અને $R _2=(15 \pm 0.5) \Omega$ મૂલ્યનો બે અવરોધો આપેલા છે. જયારે તેમને સમાંતર જોડવામાં આવે છે ત્યારે તેના પરિણામી અવરોધના માપનમાં થતી ટકાવારી ત્રુટી છે.